Last edited by Samull
Thursday, November 12, 2020 | History

2 edition of Mathematical solutions of the one-dimensional neutron transport equation found in the catalog.

Mathematical solutions of the one-dimensional neutron transport equation

  • 364 Want to read
  • 29 Currently reading

Published by Naval Postgraduate School .
Written in English

    Subjects:
  • Mathematics

  • ID Numbers
    Open LibraryOL25241566M

    Analytical, Diagnostic and Therapeutic Techniques and Equipment Binomial Distribution Rheology Models, Cardiovascular Models, Biological Lung Compliance Models, Theoretical Airway Resistance Lung Volume Measurements Finite Element Analysis Models, Chemical Models, Statistical Nonlinear Dynamics Reproducibility of Results Models, Molecular . The two-group one-dimensional neutron transport equation with isotropic scattering is studied. No analytical solution is found, but the equations are cast in a form that is convenient for numerical computation. This computation involves the solution of two coupled singular integral equations.


Share this book
You might also like
This is Botswana.

This is Botswana.

Fitness Lab Manual

Fitness Lab Manual

RACER # 3271959

RACER # 3271959

study of Japanese travel habits and patterns

study of Japanese travel habits and patterns

Women in the Florida parishes

Women in the Florida parishes

Structure of optimal policies for production smoothing and equipment replacement

Structure of optimal policies for production smoothing and equipment replacement

military religious orders of the Middle Ages

military religious orders of the Middle Ages

Modern Britain 1870-1939.

Modern Britain 1870-1939.

voyage to Arcturus.

voyage to Arcturus.

Assateague Island A Guide to Assateague Island National Seashore Maryland and Virginia

Assateague Island A Guide to Assateague Island National Seashore Maryland and Virginia

From Shekki to Sydney

From Shekki to Sydney

Church, nation and state in Russia and Ukraine

Church, nation and state in Russia and Ukraine

The Chieftains

The Chieftains

Hanover poems

Hanover poems

Cavour

Cavour

Postwar revolt of the rural poor in Bengal

Postwar revolt of the rural poor in Bengal

Mathematical solutions of the one-dimensional neutron transport equation by Larry Thomas Davis Download PDF EPUB FB2

An illustration of an open book. Books. An illustration of two cells of a film strip. Video. An illustration of an audio speaker. Audio An illustration of a " floppy disk. Mathematical solutions of the one-dimensional neutron transport equation. Item Preview remove-circle Share or Embed This : texts All Books All Texts latest This Just In Smithsonian Libraries FEDLINK Mathematical solutions of the one-dimensional neutron transport equation.

Item Preview remove-circle Mathematical solutions of the one-dimensional neutron transport equation. by. 7. Mathematical solutions of the one-dimensional neutron transport equation book.

In this work we have proposed a fully meshless method for the numerical solution of the neutron transport equation. The multiquadric basis function is used as the radial basis function for the spatial approximation and the angular variable is treated by the P N method.

The use of Legendre polynomials instead of discrete ordinates has provided a Author: T. Tanbay, B. Ozgener. tingtheneutron transportequation to an integralequation and then to a singularintegralequation, a solution is found in a method.

The subject of this work is computational modeling of neutron trans-port relevant to economical and safe operation of nuclear facilities. The general mathematical model of neutron transport is provided by the linear Boltzmann’s transport equation and the thesis begins with its precise mathematical formulation and presentation of known con.

exact solutions to model problems of elliptic, hyperbolic, and parabolic type. Next, we review the basic steps involved in the design of numerical approximations and the main criteria that a reliable algorithm should satisfy.

The chapter concludes with an outline of the rationale behind the scope and structure of the present book. We consider the combined Walsh function for the three-dimensional case. A method for the solution of the neutron transport equation in three-dimensional case by using the Walsh function, Chebyshev polynomials, and the Legendre polynomials are considered.

We also present Tau method, and it was proved that it is a good approximate to exact solutions. Miller, W. Jr., E. Lewis, and E. Ris sow, The application of phase-space finite elements to the two-dimensional transport equation in x-y geometry, to appear in Nucl.

Sci. Eng. Ohnishi, T., Application of finite element solution technique to neutron diffusion and transport equations, Proc. Conf.

on New Developments in Reactor. By treating one of the space dimensions exactly and approximating the other two by the exp (−iBr) assumption, which is suggested by asymptotic transport theory, it is possible to reduce the three‐dimensional transport equation to an equation that is of one‐dimensional form and that still contains details Mathematical solutions of the one-dimensional neutron transport equation book the complete three‐dimensional angular distribution.

The spectral analysis of a dissipative linear transport operator with a polynomial collision integral by the Szőkefalvi-Nagy - Foiaş functional model is given. An exact estimate for the remainder in the asymptotic of the corresponding evolution semigroup is proved in the isotropic case.

In the general case, it is shown that the operator has at most finitely many eigenvalues and spectral. The mathematical theory of diffusion is founded on that of heat conduction and correspondingly the early part of this book has developed from 'Con-duction of heat in solids' by Carslaw and Jaeger.

These authors present many solutions of the equation of heat conduction and some of them can be applied. Abstract. This book presents a numerical analysis of neutron transport theory.

Topics considered include the kinetic reactor equation, adjoint equations, the multigroup kinetic reactor equations, the one-group kinetic equation, solution of one-group problems in the transport theory, the method of spherical harmonics, Galerkin's method, the finite-difference equations. This book presents some recent mathematical developments about neutron transport equations.

Several different topics are dealt with including regularity of velocity averages, spectral analysis of transport operators, inverse problems, nonlinear problems arising in the stochastic theory of neutron chain fissions, compactness properties of perturbed of c0.

For the case of one-dimensional, mono-energetic neutron transport, a fractional-order telegraph equation is developed using the continuous-time random walk technique.

Request PDF | Exact solution of the neutron transport equation in spherical geometry | Solution of the neutron transport equation in one dimensional slab geometry construct a.

With all the term expresses above, the partial neutron flux J± given by the system equations (35a) and (35b) at the boundaries of the medium are computed in the presence of four term binomial scattering law with internal numerical results are represented graphically in figures 1, 2, 3 and figure 1, evolution of the fluxes J+ and J−versus the.

The code APOLLO, written in Saclay at the Service de Physique Mathematique, makes it possible to calculate the space and energy dependent direct or adjoint flux for a one dimensional medium, by the solution of the integral form of the transport equation, in the.

Description; Chapters; Supplementary; This book presents some recent mathematical developments about neutron transport equations. Several different topics are dealt with including regularity of velocity averages, spectral analysis of transport operators, inverse problems, nonlinear problems arising in the stochastic theory of neutron chain fissions.

The neutron diffusion equation is often used to perform core-level neutronic calculations. It consists of a set of second-order partial differential equations over the spatial coordinates that are, both in the academia and in the industry, usually solved by discretizing the neutron leakage term using a structured grid.

This work introduces the alternatives that unstructured grids can. The density is the solution of an integral-differential equation named the neutron transport equation. Many authors paid attention to this problem and its applications [, ].

In this paper we provide a periodical analytical solution for the one-dimensional stationary problem (1), where u(x,y) is the neutron density and g(x,y) is the source. A solution of the neutron transport equation is obtained by expanding the flux Phi (r Omega) at position r in direction Omega as a series of the form: Phi (r, Omega)= Sigma l=0 N (2l+1) Sigma m=0 l P l m (cos theta)(psi lm (r)cos(m phi)+ gamma lm (r)sin(m phi)) where P l m (cos theta) is the associated Legendre polynomial of order l, m with theta and phi the.

Summary. The linear integral transport operator for slab geometry is formulated and studied as a mapping on the set of measures on the phase space of the underlying system, with the expected number of neutrons emergent from a collision represented by.

proximate solutions to the non-scattering one-dimensional neutron transport equation in spherically symmetric geometry.

It is shown that the resulting numerical approximations avoid ux dip and oscillations. The least-squares discretization yields a. The first refers to the particle transport in the homogeneous and isotropic medium for a plane geometry, in which the value of the solution obtained by HPM into one end of its domain is a linear combination of the values in some given points of this domain.

In the second case, the neutron transport equation. () Spherical Harmonics Finite Element Transport Equation Solution Using a Least-Squares Approach. Nuclear Science and Engineering() New Variational Formulations for the Neutron Transport Equation.

Superposition of solutions When the diffusion equation is linear, sums of solutions are also solutions. Here is an example that uses superposition of error-function solutions: Two step functions, properly positioned, can be summed to give a solution for finite layer placed between two semi-infinite bodies.

L3 11/2/06 8. One-Dimensional Neutron Transport Suspended Cable Chapter The Wronskian and Linear Independence Converting Systems of Ordinary Differential Equations Solutions of Ordinary Differential Equation Systems Matrix Mathematics particularly in the medical fields.

In using this book, students may review and study the illustrated problems at 5/5(1). We prove a regularity result for a Fredholm integral equation with weakly singular kernel, arising in connection with the neutron transport equation in an infinite cylindrical domain. The theorem states that the solution has almost two derivatives in L.

The work is devoted to direct and inverse problems of the transport equation in the context of a nuclear geophysical technology based on pulsed neutron-gamma logging of inelastic scattering (PNGL-IS).

In the first part of the paper we analyze the distribution of fast neutrons from a pulsed source of MeV and study distributions of gamma-quanta of. forms of the neutron transport equation are reviewed. The solution methods are shown to evolve from only a few basic numerical approximations, such as expansion techniques or the use of quadrature formulas.

The emphasis is on the derivation of the approximate equations from the transport equation, and not on the solution of the resulting system.

To solve one-dimensional cases, analytic methods have been developed based on expanding the solution in terms of generalized eigenfunctions.

The Monte-Carlo method is used to find functionals in the solutions to complex multi-dimensional problems. Finite-difference approximation methods are widely used for transport equations.

stochastic transport equation can be solved computationally through numerical solution of a stochastic difference system. The neutron transport equation is of fundamental importance in nuclear reactor theory and shielding design [9, 12, 17, 22].

The stochastic nature of the neutron transport process has been of interest for many years. proximate solutions to the non-scattering, one-dimensional neutron transport equation in spherically-symmetric geometry.

It is shown that the resulting numerical approximations avoid ux dip and os-cillations. The least-squares discretization yields a. A Deterministic Method for Transient, Three-Dimensional Neutron Transport S. Goluoglu', C. Bentle?, R. IIeMeglio, M. Dunn3, K. Norton, R.

Pevey, I. Suslov4, and H.L. Dodds Abstract TfM --r7os A deterministic method for solving the time-dependent, three-dimensional Boltzmann transport equation with explicit representation of delayed neutrons has been developed and.

A difference form of the Boltzmann equation is derived as the final expression for machine computation. Comparisons are given of the numerical solutions with an analytical solution for a constant source distribution, and with NIOBE calculations and experimental spectra for neutron transport in water, with good agreement obtained between them.

Solution of the neutron transport equation in one dimensional slab geometry construct a basis for the solution of neutron transport equation in a curvilinear geometry.

Therefore, in this work, we attempt to derive an exact analytical benchmark solution for both neutron transport equations in slab and spherical medium by using P N approximation. Mathematical preliminaries --Formulation and solution of discrete boundary value problems --The group diffusion equations of reactor physics --Successive overrelaxation --Residual polynomials --Alternating direction implicit iteration --The positive eigenvector --Numerical studies for the diffusion equation.

Neutron transport a Introduction b Derivation of the neutron transport equation Fluid dynamics a Mathematical formalism b Generic differential conservation laws c Mass and momentum differential conservation equations Heat transfer a Heat transfer by conduction b Heat transfer by convection.

Neutron Balance – Continuity Equation. The mathematical formulation of neutron diffusion theory is based on the balance of neutrons in a differential volume element.

Since neutrons do not disappear (β decay is neglected) the following neutron balance. We verify -after appropriate modifications- an old conjecture of Brezis-Ekeland [4] concerning the feasibility of a global and variational approach to the problems of existence and uniqueness of solutions of non-linear transport equations, which do not normally fit in an Euler-Lagrange framework.

Our method is based on a concept of "anti-self duality" that seems to be inherent. A systematic solution approach for the neutron transport equation, based on a least-squares finite-element discretization, is presented.

This approach includes the theory for the existence and uniqueness of the analytical as well as of the discrete solution, bounds for the discretization error, and guidance for the development of an efficient.

() L 1 Convergence of the Discrete Ordinates for the Neutron Transport Equation in an Infinite Cylindrical Domain. Nuclear Science and Engineering() Errors and optimality for spatial approximations in one-dimensional transport. Buy Mathematical modeling of neutron transport: Theoretical and computational point of view on FREE SHIPPING on qualified orders.